Refine Your Search

Topic

Search Results

Technical Paper

Calculating Heavy-Duty Truck Energy and Fuel Consumption Using Correlation Formulas Derived From VECTO Simulations

2019-04-02
2019-01-1278
The Vehicle Energy Consumption calculation Tool (VECTO) is used in Europe for calculating standardised energy consumption and CO2 emissions from Heavy-Duty Trucks (HDTs) for certification purposes. The tool requires detailed vehicle technical specifications and a series of component efficiency maps, which are difficult to retrieve for those that are outside of the manufacturing industry. In the context of quantifying HDT CO2 emissions, the Joint Research Centre (JRC) of the European Commission received VECTO simulation data of the 2016 vehicle fleet from the vehicle manufacturers. In previous work, this simulation data has been normalised to compensate for differences and issues in the quality of the input data used to run the simulations. This work, which is a continuation of the previous exercise, focuses on the deeper meaning of the data received to understand the factors contributing to energy and fuel consumption.
Technical Paper

Experimental Assessment of Powertrain Components and Energy Flow Analysis of a Fuel Cell Electric Vehicle (FCEV)

2022-06-14
2022-37-0011
European Union's (EU) Climate Law sets a legally binding target of net-zero greenhouse gas emissions by 2050. EU identified hydrogen technologies as a priority introducing hydrogen-powered propulsion systems into the market. Even though the new registrations of fuel cell (FC) passenger cars increased by 41% in 2020 in Europe, the research community faces a lack of public and independent available data regarding the performance and energy efficiency of state-of-the-art FC electric vehicles. This study introduces a tailored methodology to characterise the different powertrain components and analyse the energy flow for a Fuel Cell Electric Vehicle (FCEV) already available on the market. Experimental data are gathered over different driving conditions, including standard driving cycles such as WLTP and US06 tests performed in a laboratory.
Technical Paper

Experimental Evaluation of VECTO Hybrid Electric Truck Simulations

2023-04-11
2023-01-0485
In European Union (EU), new heavy-duty vehicles are simulated with the Vehicle Energy Consumption calculation TOol (VECTO) to certify their fuel consumption and CO2 emissions. VECTO will also be used to certify vehicles with hybrid-electric powertrains in all topological configurations from P0 to P4 parallel systems and series hybrids. A development version of VECTO able to simulate these configurations is already available and was used for this study. The study team collected measurement data from a specific P2 hybrid lorry, instrumented with wheel torque sensors, current and voltage sensors, fuel flow sensor and a PEMS device. The vehicle was tested on the chassis dyno and on the road, and a representative model was created in VECTO. The regional delivery certification cycle was simulated in VECTO in charge sustaining and full electric mode.
Journal Article

Battery Electric Vehicles Energy Consumption Breakdown from On-Road Trips1

2022-06-14
2022-37-0009
Battery Electric Vehicle (BEV) sales have been spiking up due to a series of factors: zero tailpipe emissions, wider model availability, increased customer acceptance, reduced purchase price, improved performance and range. The latter is a crucial factor the consumers consider when purchasing a BEV, and it largely depends on how the vehicle operates (e.g. average speed), traffic, ambient conditions, and battery size. When driven on the roads, the actual range of BEVs can be significantly smaller than the certified value obtained from laboratory testing at standard conditions. To understand the factors influencing vehicle range in real-world operation, the study team performed on-road tests on three production passenger vehicles currently available in the European market. The measured quantities, including vehicle signals from OBD/UDS, were used to quantify the vehicle energy consumption.
X